Comparative Transcriptome Analysis of a Toxin-Producing Dinoflagellate Alexandrium catenella and Its Non-Toxic Mutant

نویسندگان

  • Yong Zhang
  • Shu-Fei Zhang
  • Lin Lin
  • Da-Zhi Wang
چکیده

The dinoflagellates and cyanobacteria are two major kingdoms of life producing paralytic shellfish toxins (PSTs), a large group of neurotoxic alkaloids causing paralytic shellfish poisonings around the world. In contrast to the well elucidated PST biosynthetic genes in cyanobacteria, little is known about the dinoflagellates. This study compared transcriptome profiles of a toxin-producing dinoflagellate, Alexandrium catenella (ACHK-T), and its non-toxic mutant form (ACHK-NT) using RNA-seq. All clean reads were assembled de novo into a total of 113,674 unigenes, and 66,812 unigenes were annotated in the known databases. Out of them, 35 genes were found to express differentially between the two strains. The up-regulated genes in ACHK-NT were involved in photosynthesis, carbon fixation and amino acid metabolism processes, indicating that more carbon and energy were utilized for cell growth. Among the down-regulated genes, expression of a unigene assigned to the long isoform of sxtA, the initiator of toxin biosynthesis in cyanobacteria, was significantly depressed, suggesting that this long transcript of sxtA might be directly involved in toxin biosynthesis and its depression resulted in the loss of the ability to synthesize PSTs in ACHK-NT. In addition, 101 putative homologs of 12 cyanobacterial sxt genes were identified, and the sxtO and sxtZ genes were identified in dinoflagellates for the first time. The findings of this study should shed light on the biosynthesis of PSTs in the dinoflagellates.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Whole Transcriptomic Analysis Provides Insights into Molecular Mechanisms for Toxin Biosynthesis in a Toxic Dinoflagellate Alexandrium catenella (ACHK-T)

Paralytic shellfish toxins (PSTs), a group of neurotoxic alkaloids, are the most potent biotoxins for aquatic ecosystems and human health. Marine dinoflagellates and freshwater cyanobacteria are two producers of PSTs. The biosynthesis mechanism of PSTs has been well elucidated in cyanobacteria; however, it remains ambiguous in dinoflagellates. Here, we compared the transcriptome profiles of a t...

متن کامل

Comparative Proteomic Analysis Reveals Proteins Putatively Involved in Toxin Biosynthesis in the Marine Dinoflagellate Alexandrium catenella

Alexandrium is a neurotoxin-producing dinoflagellate genus resulting in paralytic shellfish poisonings around the world. However, little is known about the toxin biosynthesis mechanism in Alexandrium. This study compared protein profiles of A. catenella collected at different toxin biosynthesis stages (non-toxin synthesis, initial toxin synthesis and toxin synthesizing) coupled with the cell c...

متن کامل

iTRAQ-Based Quantitative Proteomic Analysis of a Toxigenic Dinoflagellate Alexandrium catenella and Its Non-toxigenic Mutant Exposed to a Cell Cycle Inhibitor Colchicine

Citation: Zhang S-F, Zhang Y, Lin L and Wang D-Z (2018) iTRAQ-Based Quantitative Proteomic Analysis of a Toxigenic Dinoflagellate Alexandrium catenella and Its Non-toxigenic Mutant Exposed to a Cell Cycle Inhibitor Colchicine. Front. Microbiol. 9:650. doi: 10.3389/fmicb.2018.00650 iTRAQ-Based Quantitative Proteomic Analysis of a Toxigenic Dinoflagellate Alexandrium catenella and Its Non-toxigen...

متن کامل

Comparative studies on mycosporine-like amino acids, paralytic shellfish toxins and pigment profiles of the toxic dinoflagellates Alexandrium tamarense, A. catenella and A. minutum

Surface bloom-forming species, predominantly of the Dinophyceae, have the capacity to accumulate high amounts of mycosporine-like amino acids (MAAs). The 3 dinoflagellate species (Gonyaulacales, Dinophyceae), Alexandrium tamarense (Lebour) Balech, A. catenella (Weedon et Kofoid) Balech, and A. minutum Halim, are bloom-forming toxic isolates. They are usually found forming blooms near the surfac...

متن کامل

Exposure to the Paralytic Shellfish Toxin Producer Alexandrium catenella Increases the Susceptibility of the Oyster Crassostrea gigas to Pathogenic Vibrios

The multifactorial etiology of massive Crassostrea gigas summer mortalities results from complex interactions between oysters, opportunistic pathogens and environmental factors. In a field survey conducted in 2014 in the Mediterranean Thau Lagoon (France), we evidenced that the development of the toxic dinoflagellate Alexandrium catenella, which produces paralytic shellfish toxins (PSTs), was c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2014